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Abstract

Understanding how a small number of cells grows into a fully differentiated animal, i.e.,
morphogenesis, is an interdisciplinary problem with applications from robotics to disease
treatment. Determining tissue dynamics’ physical and mechanical nature is essential to
construct a complete picture of how animals develop. The objective of this project is
to combine continuum mechanics theory, particle simulations, and in vivo experimental
data to understand how endogenous mechanical forces and tissue patterns correlate to
morphological events in the epiboly process of Annual Killifish and Zebrafish embryos
morphogenesis. To ensure the relevance of our results, the models chosen to extract



mechanical properties of the tissue will be quantitatively validated for each individual cell
in a calibrating process called micro-mechanics. This work is mostly based and inspired
by the PhD thesis of Fernanda Pérez-Verdugo [1]. Moreover, the work will be done
in collaboration with the LEO laboratory, led by Prof. Miguel Concha, at Faculty of
Medicine of the Universidad de Chile, responsible for the experimental data.

1 Introduction

The impact of material science in the modern world is undeniable. Understanding the
underlying physical equations behind materials like steel, concrete and semiconductors
enabled us to build our cities and technology. Now a new field is emerging where we try
to understand biological tissue, i.e., collectives of cells working together to perform some
task, as biological materials. These materials have fundamental mechanical equations that
yet need to be found, tested, and defined. The future applications of this science will span
from developing life-like materials to robotics, organs printing, understanding diseases
development and progression (like birth diseases and cancer), and the development of
new treatments. There are several ongoing works trying to reach does goals, but there is
still much work to be done.

The study of biological materials poses an extra difficulty in relation to its more clas-
sical counterpart. The combination of physics and material engineering with biology and
medicine introduces an inherent complexity to this subject. Consequently, the physicist’s
efforts are generally focused on experiments with reduced complexity like in wvitro cellular
monolayers [2, 3, 4, 5, 6, 7, 8, 9], in vitro cellular aggregates [10, 11, 12, 13|, and in vivo
morphogenesis experiments of model animals [14, 15, 16, 17, 18, 19, 20]. The last ones
are of particular relevance in medicine and biology, since in vivo assays, although more
complex than in vitro ones, generally give results with more real-life applications. How-
ever, this extra complexity makes it harder to obtain a complete picture of these systems,
especially regarding the mechanical aspects of the tissue.

The knowledge of how biochemical signals drive an organism’s growth has advanced
significantly with the genomics revolution. Nevertheless, the mechanical side is still lack-
ing in understanding. Moreover, although it is known that both biochemical and mechan-
ical signals play a crucial role in animal development, how these different mechanisms
work together is not fully understood. A practical case of the previous is in the epiboly
process during morphogenesis of the Annual Killifish and the Zebrafish embryos [21, 22].
Although these two fishes are widely used as model animals to understand animal devel-
opment, there is still much to be known of how the force transmission drives the evolution
of these systems.
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Figure 1: Epiboly process in the Annual Killifish (adapted from Ref. [21]).



The epiboly is one of the initial embryonic stages of the Annual Killifish, and the
Zebrafish, where the embryo is in a spherical shape with an internal part called yolk and
an external layer of cells (EVL) that spread over the yolk. In Figure 1 (a), we can see
the pre-epiboly! where the EVL cells (in brown) are packed together in the pole over the
yolk (in gray). The EVL will then spread until all the yolk is covered (Figure 1 b, c,
and d). This is accomplished by the cells actively decreasing their height, and doing so,
increasing their surface area. Moreover, after they cross the equator, two other active
processes come to play: the contraction of a supracellular ring of proteins formed in the
border of the EVL and a traction of microtubule cables that stretch from the south pole
of the yolk to the edge of the EVL. How this different mechanism directs the epiboly is
unclear. Moreover, the EVL in the Killifish shows contraction pulses, and in the Zebrafish
there are also contraction events that lead to delaminations, i.e., when a cell detach from
the EVL and enter the internal part of the embryo. These two processes are important
morphological events in which the relation with the forces in the system is not clear. All
these open questions are well suited for an analysis from the mechanical point of view.

Cells are discrete and independent active objects. However, the description of tissues
as a continuum-like material has proven successful in obtaining mechanical properties.
In Ref. [8], by modeling an epithelial monolayer as an active nematic liquid crystal,
they show that high-stress regions in the tissue are precursors of cell extrusion and cell
death. In Ref. [20], by using supracellular actin fibers in the Hydra as nematic director
of a continuous field, they show that the appearance of morphological structure, e.g., the
mouth and tentacles of the animal, are associated with topological defects. In Refs. [19]
and [18], using a continuum mechanics approach, where the cells in the tissue are treated
as polygons (with vertices and edges) of a continuum material, they were able to correlate
strain and stress patterns, obtained from the modeling, with morphological events in the
wing and the thorax of the Drosophila, respectively.

From experiments to theory, there is no shortage of tools to analyze the mechanical
aspects of tissues. Refs. [23], and [24] present a robust theoretical framework to describe
discrete patterns, like foams bubbles and cells, as a continuum material, and then, re-
trieve mechanical observables. Refs. [25] and [26] present a comprehensively reviews of
experimental techniques used to quantify forces in biological tissues, being traction force
microscopy [27, 28] the most used one, probably. Nevertheless, when considering real
three-dimensional in vivo scenarios, measuring forces is yet a troublesome and expensive
process, and, sometimes, because of the specificity of each biological problem, requires
also the development of a new technology. To overcome this experimental problem, nu-
merical models are widely used as solutions. One simulates the tissue and tries to extract
from the model’s predefined dynamics and constitutive laws of the model, the mechanical
properties in the tissue.

There are several numerical models in biology. One of the most used for tissues is
the Vertex Model [29, 30, 31, 32, 33, 34, 35, 36, 37|, which is a relatively simple, but
powerful particle model. A recent and more complex approach is the deformable particle
model (or ring model) [38, 39, 40], that have been used to describe soft solids and single
cells, but a tissue application is still lacking. To ensure that the dynamical observables
extracted from the models have a real relevance to the target experiment, they must be
calibrated and validated by the experimental data. Although approaches in this direction
are already being made, a thorough and quantitative validation of these models in in vivo

IFigure 1 shows only the epiboly process for the Annual Killifish, however, the process is very similar
for the Zebrafish.



situations is still necessary.

In this work, we want to determine if stress and strain patterns are mechanical pre-
cursors for morphological events, namely, cellular contractile pulses and delimitation, in
the Annual Killifish and Zebrafish epiboly process. Also, we want to investigate how
the different active forces, namely, cellular height decrease, supracellular contraction ring,
and microtubule related traction, work together to drive cells during epiboly. We aim
to achieve these goals by analyzing the data from three-dimensional in vivo experimen-
tal images as a continuum mechanics problem and by comparing the experiments with
the vertex model and the deformable particle model. We also aim to introduce micro-
mechanics, a validation process where the model’s accuracy in predicting the tissue’s
motion is tested for each individual cell, as a quantitative validation technique for tissue
models. Using the validation, we aim to determine if the general form of the vertex and
deformable particle models are indeed a good representation of biological tissue. If they
are not a good representation, we will show how we must modify these models to fit the
experiments correctly.

The strain patterns will be computed directly from the experimental tissue displace-
ment field by using small deformation elastic theory [41]. In contrast, the forces in the
system, necessary ingredients to compute the stress, will be obtained indirectly from the
validated numerical models. The stress tensor of the cells will be derived from kinetic
theory [42]. Finally, after having the validated models and the mechanical fields, we will
attempt a complete simulation of the whole epiboly process to understand the different
active forces in the system.

This work is relevant because our mechanical analysis will help complete the big picture
of how animals evolve. Also, the validation process may have a high impact in the tissue
physics field since several works use the vertex model. Moreover, micro-mechanics is a
general technique that could validate current and future models in tissue biology.

2 Objectives

GO?: Compare the dynamics of the enveloping epithelial cell layer in the morphogenesis
of fish embryos to two discrete models for biological tissues: the vertex model and the
deformable particle model.

SO1: Quantitatively validate the well-established vertex model using experimental data
to find the most appropriate form for the models’ equations and the values of the param-
eters.

SO1.1: Repeat the validation in SO1 for the less known deformable particle model and
compare the results with those of the vertex model.

SO2: Use the validated models and elastic theory to map the stress and strain patterns in
the experiments to determine if there is a correlation between mechanical inhomogeneities
or anisotropies in the tissue and morphogenic events, like delamination and cell contrac-
tile pulses. That is, investigate if stress and strain inhomogeneities or anisotropies are
precursors or proxies of morphological events in fish embryos.

SO3: Use the validated model to investigate the role and the interplay of the different
active forces that drive the epiboly process in fish embryos.

2GO - General Objectives; SO - Specific Objectives



3 Experimental data and Models

3.1 Experimental data

Our data consists of 3D in vivo experiments, developed by the LEO laboratory, led by
Prof. Miguel Concha, at Faculty of Medicine of the Universidad de Chile of the Annual
Killifish and the Zebrafish epiboly process. The displacement of the cells in the samples
is a slow process, with characteristic times on the scale of hours. The fast frame rate and
the good resolution of the images enable capturing the tissue in detail.

In the movie 01, we can see the pre-epiboly process in the Annual Killifish. The more
external cells are increasing in area while spreading over the Yolk. In the movie 02, we
can see the zebrafish cells migrating, while conserving the area, in the last part of the
epiboly process. From the experiments, we can extract observables, such as, the borders
of the cells, the area of the cells, the perimeter, and the vertices, i.e., the points where the
cellular membranes of three (or more) cells connect, as can be seen in Fig. 2. We will use
these observables to compute the tissue displacement field and calibrate the numerical
models. In movie 03, we see the 2D digital reconstruction of the experimental data from
the vertices of the Killifish embryo (only the edges connecting the vertices are shown). In
movie 04, we see the 2D projection of the experimental raw data from the borders of the
cells from the same experiment.

Figure 2: (a) Snapshot of the Annual Killifish cells. (b,c,d) The observables: area,
perimeter and vertices of the same cell.

3.2 Vertex model

In the vertex model, as the name indicates, we simulate the dynamics of vertices of cells
rather than the cells themselves. The simulated tissue then is not composed of individual
point-like cells but as a collection of vertices where the off-lattice r; position of each vertex
evolves in time according to an energy functional E of the entire tissue. Since a biological
tissue is an over-damped system, the motion of the vertices will be given by Eq. (1):

dr;  OE
,}/dt N 81‘,’7

(1)

where v is the drag constant of the system. The basic structure of the tissue is given by
its associated graph G-
G = {Vertices, Edges, Cells},p. , (2)

a set of vertices, edges, and cells IDs that determine the topology of the tissue. Figure 3 (a)
shows a generic graph of a tissue. The graph structure in the vertex model is arbitrary
and can have a constant topology or not, depending on the objective of the simulation.
In our case, the graph, and hence, the topology, is defined by the experimental data.



Although the topology is not necessarily fixed for the entire time of the experiments (for
example, cell division or delamination events), in our initial approach we will only work
with sections of the tissue that conserve topology over time.
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Figure 3: (a) A generic vertex tissue graph comprising eight cells (roman numbers). In this
graph, the edges a, b and ¢ and the vertices 1 and 2 belong to the cell I, and the vertex 3 belong
to both cell I and II. (b) Representation of the force vectors over the vertex i associated with
the gray cell. Green is the area force vector, and red and blue are the perimeter, and line tension
force vectors (adapted from Ref. [1]).

Just like the Graph structure, the energy functional in Eq. (1) can have an arbitrary
shape. Many modelings try to account for the 3D design of the cells constructing a 3D
graph for the tissue where, in general, the energy functional will try to conserve properties
like the volume and surface of the cells [34]. However, more straightforward 2D approaches
[29] show both qualitative and quantitative agreement with experiments in whats is called
apical models: a model where the tissue is simplified as only the top part, or the top view of
the cells. When considering biological tissues with constant topology, especially epithelial
tissues, like the ones studied here, the following form is commonly used:

K K
E = Z TA (Ae — A0c)2 + Z TP(PC — Po)* + Z Jijli, (3)
c c (:4)

where Eq. (3) describes a 2D planar tissue, and K4, Kp, and J;; are parameters of the
model.

Equation (3), applied to Eq. (1), dictates that the vertices will move to minimize
the tissue energy so that the area A. and the perimeter P, of each cell are the closest
as possible to the target area A, and perimeter Py.. The third term in Equation (3)
introduces a line tension to the system, associated with each of the /; ; edges connecting
each 4, j pair of vertices, resulting in an attractive-only (for J; ; > 0) or repulsive-only (for
Jij < 0) force between the vertices that generally acts against the other two equilibrium
terms.

Each term in Eq. (3) has a biological interpretation. Assuming that the 3D volume of
the cells is constant in time, the area term, with elastic modules K 4, represents the resis-
tance to height fluctuations, i.e., the incompressibility of the cell. The incompressibility
is due to the conservation of the fluid inside the cell (mostly water) and to the overall
actomyosin structure of the cell cytoskeleton. With elastic module Kp, the perimeter
term is associated with the actomyosin ring that forms in the apical part of the cell. In
[29], using Py.=0, the perimeter term is given the interpretation of an always enduring
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contraction force of this ring of proteins. In Ref. [1], by letting Ag. and P,. change in
time, the area and the perimeter term give the interpretation of active myosin-driving
contractility forces with medial and perimetral origin, respectively. Finally, the line ten-
sion term, with force module J; ;, represent the adhesion cost energy. Assuming that the
density of adhesion is constant along the cells” borders, a bigger /; ; means more adhesion,
and so, more adhesion energy in that segment, which is modeled using J; ; > 0.

Inspecting Eq.(3) we see that the perimeter and the line tension term have similar
mathematical origins. Considering a periodic system with J;; = J, i.e., the limit of
an infinity large tissue with uniform line tension, and knowing that P, = > _I., we can
rewrite the energy functional as:

K ) Kp J \1° J? — 4JPy.Kp
E_g 5~ (Ac— Aq) +¥ > [Pc—(POC—zKP)] —Z( Si . (4)

The last term in Eq. (4) has only constants and so it vanishes when applied to Eq. (1),

while (POC — ﬁ) is equivalent to a new target perimeter Fj;. that depends on the ratio

between J and Kp. Consequently, although the perimeter and the line tension terms
have distinct biological and physical meanings, when regarding the mathematical motion
of the vertex, the line tension can be absorbed to the perimeter term, resulting in the
simplified functional form:

K K
E=Y" TA (Ae = Aoe)” + TP(PC — Py.)?, (5)

where we changed the name of the variable Fj, back to F. for simplicity. The experimental
data contains only some dozens of cells, being far from an infinity tissue. However, we will
use Eq. (5) as our initial attempt to model the tissue-based in the Occam’s razor logic.
If necessary, we will consider more complex functionals, such as Eq. (3). Nevertheless,
we expect that Egs. (3) and (5) will only show significantly different results for the case
that the line tension in the tissue is not uniform. For example, in the epiboly final stage,
where a contractile supracellular ring of proteins is formed in the opposite pole of the
yolk. The contraction forces of the ring could then be easily modeled using Eq. (3), e.g.,
by increasing the values of .J; ; of the edges belonging to the supracellular ring.

Finally, to account for increasing apical size of the cells, i.e., the area of the cells, in
time, resulting from the cell’s spread to cover the yolk (see movie 01), we will add a plastic
dynamic for the target area and perimeter:

d Ao

= —valAo — Ad) + fa, (6)
d Py,

o= —vp (Poc = P) + [, (7)

where v4 and vp are the plastic rates in which the target area Ay, and perimeter P, relax
to the instantaneous values of area A. and perimeter P., and f4 and fp are expansion
functions for the area and perimeter, which will be given by the experimental data.

3.3 Deformable Particle Model

In the deformable particle model, we define the cell explicitly as a ring of particles con-
nected via a set of potential energies that make the cell conserve specific quantities, such
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as area and perimeter, but allow it to deform softly [38, 39, 40]. Figure 4 shows a il-
lustration of a cell in this model. In contrast to the vertex model, the tissue assumes a
more discrete structure. Each of the individual cells has an independent dynamic, and
the cohesiveness of the tissue will depend on the explicit interaction laws chosen between
the particles, i.e., between the membranes of the cells.

(a) (b)

Figure 4: (a) A deformable particle with 24 vertices in a circular shape. (b) Example of
a deformation. In black we see the resulting curvature vectors associated to this shape.

Adapted from Ref. [38].

Each cell in the model can be interpreted as an polygon with N vertices closed packed
together. The energy functional of a tissue of deformable particles will be given by:

B Y S A4 S S o+ T S ) B, (9

i € ¢

where ;. is the length of the edge connecting the vertices ¢ and ¢ 4+ 1 of cell ¢, and [;;—;
is the module of the curvature vector given by the difference between the edge vectors of
three subsequent vertices of a same cell: 1;,_y = I, — I,_;. The first term is equivalent
to the area term in Eqgs. (3) and (5). The second term is similar to the perimeter term
in the same equations. The third term is the bending energy, which gives the model
extra stability under deformations. The last term FEjy, is the interaction energy between
different cells, which is generally modeled as a short-range attraction force.

One of the advantages of the deformable particles is the possibility of the explicit study
of cell-cell adhesions, an essential aspect of tissue dynamics. Moreover, in many situations
in the experiments, the border of the cells will be curved. The deformable particle model
does not face any relevant problem in this case (see movie 5%), while the vertex model
would need to be modified to account for such a feature. However, these extra features
come with the cost of being a computationally slower model than the vertex one, since a
tissue of deformable particles may have about ten times more particles than the vertex
model.

Although the deformable particle and vertex models are intrinsically different models,
in both of them, we can compute the same required observables, e.g., cell area, perimeter,
anisotropy. Consequently, the quantitative validation process used will be the same.

4 Methodology: Quantitative Validation

The validation of the models will follow the premise: if the model equation is an accurate
description of the biological tissue, then it must be valid for each part of the tissue and for

3Gustavo Ourique, private communication.



the whole tissue at the same time. The procedure for doing this quantitative validation
using cell-by-cell analysis is called Micro-mechanics. Here we will use the vertex model
as a reference to explain the procedure, but it is supposed to be an equivalent process for
the deformable particle model.

4.1 Quantitative validation via micro-mechanics

In a quantitative validation, one seeks to match the values of observables in the experiment
and in the theoretical /numerical model by fitting the model with experimental data. The
procedure is then to test a set of different values for the parameters in the model, e.g.,
K4, Kp,va,vp, to minimize a functional for the entire tissue:

F= / dty [(Agxp — A 4o (PP — Pjim)ﬂ , (9)

c

and also to minimize N other functionals for each of the N cells in the tissue:
o / at [(A2® — 45" 4 0 (Pw — prmy?] (10)

where a is a constant that sets A and P to have the same units and same contribution
for the functionals. If the model is a good description of the experiments, then the set of
optimal parameters obtained from Egs. (9) and (10) should have approximately the same
values.

Equation (10) is probably the simplest functional we will use. Nevertheless, due to
a greater number of degrees of freedom for a cell, i.e., 2n for n vertex, than the number
of constraints, i.e., two (the area and the perimeter), it may be necessary to include
additional terms in the functional. For example, we could add a constrain in the edges
of the cells, like >, (I — lfim)27 to minimize the distances [; between all the vertex
belonging to the target cell. Another alternative could be to minimize also in relation to
the j neighbors cells of the target cell i:

F, = / dt {(Agjp — AT pa (PeR - P Y {(Agjp - Az;m>2 +a(Pov— pim) }

"

j

(11)
which will increase the number of constraints and decrease the possibility of degenerated
states, e.g., rotated cells with the same shape.

Other functional forms can be thought of for this minimization. Still, it is crucial to
consider the cost-to-effect relation, i.e., how much more time demanding is the imple-
mentation in relation to the gain in fit accuracy. Moreover, it is essential to check if the
newly added terms have redundancy. For example, since the perimeter is computed as the
sum of the [; edges, adding an edge minimization could have some redundancies with the
perimeter minimization, leading to a lower number of constraints than expected. Since
the minimization process does not depend on the explicit form of the functional, we will
consider the simpler Eq. (10) to continue the explication.

4.2 Quantitative validation via micro-mechanics: details

The validation quality depends strongly on the quality of the experimental data and on
the number of samples, i.e., the number of embryos times the number of cells in each
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embryo. In Figure 5 (b,c,d), we can see three snapshots of the pole of the Annual Killifish
embryo in the pre-epiboly showing the evolution in time of a cell.

In Figure 5 (a), we can see a digital reconstruction of the initial configuration of the
tissue from the experimental data. This reconstruction is a tissue of 39 cells that represent
the bulk of the tissue (because of the way the vertex model is written, in the validation we
can only work with experimental vertices that are entirely surrounded by cells). Using the
data from Figure 5 (a) as the initial condition, one could then can simulate the entire bulk
of the tissue with the vertex model using the experimental data of the surface cells (the
cells surrounding the bulk, not shown in the figure) as boundary conditions. In this sense,
we have an actually simulated passive tissue (the bulk) that is driven by an interpolated
(not simulated) active tissue (the surface) given by the experiments. Using this approach,
we can run simulations for different sets of parameters until we find the optimal set of
parameters for the whole tissue that evolve the simulation as close as possible to the
experimental data, i.e., the parameters that best minimize the functional in Eq. (9).

Figure 5: (a) Digital reconstruction of the experimental data in (b) (adapted from Ref.
[1]). (c,d) Showing the same cell for early times and later times in the experiment,
respectively.

Having the best-fitted simulation, one can derive the forces inside the tissue from the
dynamic equations of the model. Movie 6 shows the force field obtained for the experiment
shown in Figure 5 (the color map is the intensity of the forces)?. Assuming a high quality
in the fitting procedure, it is undeniable that the mechanical fields obtained using this
approach will be a relevant result. However, an important question remains: how do
we know if the stress pattern found is indeed a good representation of the mechanical
forces inside the tissue? In other words, it is possible, and even likely, that given enough
parameters, one can fit not just one model to an experiment but several. Then, how can
we know which one is the correct mechanical description of the experiments?

A solution would be to execute mechanical experiments to validate the model. Still,
the central idea of using a numerical model for tissue is to avoid, when possible and wise,
doing real and expensive experiments. Here we will try to solve this problem using the
micro-mechanics approach.

In the micro-mechanics approach, rather than simulate the entire tissue, we simulate
only a small portion of it, e.g., one cell (see Figure 6), and for that one cell, that we can
call C'1, we minimize the functional in Eq. (10) to obtain the optimal set of parameters
for cell C1, i.e., we obtain: setcn = (Kac1, Kpci1,vac1,Vpc1). We repeat this for cells
C2, C3, ..., Cy, until we have a general set {setc;} with the optimal parameters for each
of the cells in the tissue. The model will be considered an accurate description of the
biological tissue if the optimal parameters of all cells have approximately the same value.
In movie 7, we can see the micro-mechanics simulation for one cell. The simulated part of

4Fernanda Perez, private communication.
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the tissue is green. In black, the experimental data, and, in blue, the interpolated data.
The interpolation function is such that it matches precisely the experimental data.

Figure 6: The green vertices corresponds to the cell that will be simulated via micro-
mechanics. In contrast, the purple ones correspond to the surrounding cells, for which
the experiments give the evolution. The time in the experiment is increasing from (a) to

(d).

An excellent way to understand this validation is to think about the Navier-Stokes
equation. We know that the Navier-Stokes is a good model for some fluid because we
have quantitative experimental measurements showing that each part of the fluid obeys
the state equation. This experimentally based validation is what we want to do to model
our biological tissue. Suppose we find that the set of optimal parameters differs from each
other. In that case, the next step will be to modify the model to find the “correct” form
of the equations, similarly to adjusting the Navier-Stokes to account for a turbulent fluid,
for example.

4.3 Possible outcomes

Since we are in the initial stage of the project, it is not wise to be very speculative.
Nevertheless, we believe in three different possible outcomes for the validation. (i) The
best-case scenario where the obtained optimal parameters are the same for all cells. (ii)
The cells do not have the same parameters, but there is some correlation between the
obtained parameters and properties of the cell. For example, the area force constant K4
has a linear relation with the initial target area of the cells. In these cases, the results
would be telling us that modifying K 4 to k4 Aq. is a necessary modification of the model.
(iii) The worst-case scenario where the parameters are different, and there is no correlation
whatsoever. This situation would probably require rethinking the model from scratch.

5 Methodology: Fate of the Tissue

This section explains how we will extract the endogenous mechanical information, using
the validated models and elastic theory, and then try to correlate it to morphological
events in the embryos.

5.1 Stress field

The stress tensor o, of each of the ¢ cells in the tissue will be computed by the relation:

2 Rioff

I (12)

O, =
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where the sum is over all the 7 vertices belonging to the cell, A. is the area of the cell,
R is the distance vector between the vertex ¢ and the center of the cell, £ is the force
vector experienced by vertex i, and ® is the tensorial product. This relation is derived
from Kinetic Theory (Ref. [42], pag. 26) and was used by Ref. [1] to compute the average
stress in a vertex model tissue.

Equation (12) has a general form and can be used not only for the vertex model, but
also for the deformable particle models. The R{ and the A, are obtained directly from the
experimental images, while the forces f{ will be given as outputs from the simulations.

5.2 Strain field

Although the cells in the tissue undergo large deformations during the experiments, the
deformations of the cells between two frames of the experimental data are small. Conse-
quently, we can use the strain tensor for small deformations (Ref. [41], pag. 4) to write
the strain tensor ¢, for a cell ¢ as:

1
=3 [Vuc + (Vu,)"| | (13)

where u,. is the displacement field inside the cell ¢ between two frames, Vu,, a rank two
tensor, is the gradient of u. and ()T is the transpose. We do not know the exact form of
u., but we can assume a simple linear form for the displacement:

u. = uj + IR, (14)

where ug is associated with the translation of the cell, R, is the distance between any
point inside the cell and the center of the cell, and I'® is the deformation matrix of the
cell. Applying Equation (14) to Equation (13) we obtain that:

£ = % [T+ ()], (15)

and now we only need to obtain I' to calculate the strain of the cells.

In equation (14), u. and R, are going to be given by the experimental data. Con-
sequently, we can obtain uf and I'“ by fitting the data, i.e., by writing the following
quadratic error function:

2= [uf — (uf + TORS)] (16)
Xe 0 0 4 ’
i
for each of the ¢ cells in the tissue, where the sum in ¢ is over the vertices of cell ¢, and
then minimizing it in relation to u§ and I':

o o
oug  ore

(17)

Solving the set of equations associated with Equation (17) we can then determine uf§ and
['“, and consequently, calculate the strain.

6 Methodology: Understanding the driving forces in
the morphogenesis of fish embryo

Lastly, if all the other steps in the project go well, and if we have time, we will simulate
the entire epiboly process to understand the role of the active forces in the system’s
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dynamics. This is a more speculative part of the project that we still need to elaborate
on better. However, we believe that the active area expansion of the cells can be given
by the Egs. (6) and (7). Also, the supracellular contraction ring could be modeled by
increasing the values of the line tension terms .J;; for all the edges in the border of the
tissue. Moreover, the microtubule contraction could be modeled as an external force
acting downwards in the border of the tissue. Most probably, all the dynamics in these
simulations would also need to be calibrated with the experimental data.

7 A note: the difference between our work and Ref. [1]

This work is a follow-up of ref 1. Still, our approach and objectives are different. (i) Ref
1, like many works in the literature, assumed the vertex model as an accurate description
of the experiment and then fitted it to the experimental data. Here we will validate the
assumption using micro-mechanics and test if the vertex model is a good description.
(ii) Here, we are also working with a second model, the deformable particle model, that
will allow us to explore this system’s new features and achieve extra robustness for our
results. (iii) Ref 1 did not analyze the stress and strain patterns for the cells in the embryo
nor their correlation with morphological events, which is one of the main objectives of
this work. (iv) Ref 1 analyzed only the pre-epiboly process (less than 30% of the whole
epiboly) for only one embryo and one fish. Here we will analyze the entire process for
more embryos and two types of fish.

8 Work Schedule

We already have a Python program, originally written by Fernanda Perez [1], for the
vertex model simulation of the epiboly for one embryo of the Killifish. We also have the
optimal set of parameters for the whole tissue (obtained by Ref. [1]), and we are now
searching for the optimal parameters in the vertex model for each individual cell in the
embryo. We also have a deformable particle program, written in Python and Fortran.
This code was made for a single cell on a planar surface, and so, we still need to modify it
to the epiboly multi-cell scenario. We are already finishing the derivation of Eq. (17), and
since we already have the required experimental data [1], the strain calculations for the
first embryo will be ready soon. After the derivation, getting the strain will be a matter
of writing a program to solve the resulting equations numerically. Once the vertex model
is validated, we will compute the stress in the first embryo and compare it with the strain
field and with the occurrence of the active pulses in the EVL. After the vertex model
analysis is completed, we will repeat it for the same embryo using the deformable particle
model.

Once having the full description of this first embryo, we will then apply the same
methodology for the other samples of Killifish and for the samples of Zebrafish. We
already have data from another Killifish embryo and a Zebrafish embryo. In addition,
our collaborators at the LEO lab will be doing more experiments soon to have a good
number of samples for each fish. Since our priority is to have a statistically significantly
mechanical description of the embryos, we will only attempt the simulations described in
section 6 after having all the embryos analyzed accordingly to sections 4 and 5.

Below we can see a brief description of the tasks in the project, and in Table 1 we can
see the expected work schedule for each one:
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Task 1: Vertex model micro-mechanics validation for the first embryo;

Task 2: Finish the derivation for the strain and obtain the strain for the first embryo;
Task 3: Modify the deformable particle program for multi-cell;

Task 4: Deformable particle model micro-mechanics validation for the first embryo;
Task 5: Obtain the stress, using the validated models, for the first embryo;

Task 6: Analyze the stress and strain fields found for the first embryo: the tissue fate;
Task 7: Repeat the previous steps for the other embryos.

Task 8: Simulation of the entire epiboly process as described in section 6;

Task 9: Write the thesis;

Task 10: Literature review.

T1 | T2 | T3 | T4 |T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Task 8
Task 9
Task 10

Table 1: The Table shows the three-year work schedule of the project separated into twelve
trimesters (T). The beginning of T1 corresponds to January 2022. The last two trimesters
(T11 and T12) are considered extension periods that can be used if the work requires some
extra months to be finished.

8.1 Possible difficulties and unseen problems

Setbacks in plans are an expected result in research. New waves of the COVID-19 pan-
demic could force experimentalists to stop producing new experiments, which will under-
mine the statistical significance of our results. However, we already have data from two
killifish embryos and one zebrafish embryo. So, in the worst-case scenario, we already
have data to work with. However, experimentalists are already preparing new experi-
ments. By mid-2022, we will likely have data from three embryos of each fish, which is
a reasonable number of replicates for in vivo biological experiments (the idea is to have
more experiments, though). In addition, each embryo has several cells, which increases
our statistics.

Suppose the new experimental data does not come. In this case, let’s analyze the
ones we already have and then shift our focus to simulating the entire epiboly process, as
mentioned in section 6. The difference, in this case, will be that the simulation will not
have the experimental data to make the results more relevant. However, as we will be
using relatively simple models that will already be validated (at this stage of the work),
we are pretty confident in extracting from the simulations important information on the
interaction of forces during the epiboly.
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Another possible setback is that both models fail in the validation and that we cannot
find ways to modify the equations so that they become valid. We believe this is an unlikely
scenario, as our preliminary results show that the vertex model is a good description. Even
so, if the models fail the validation, this is already a significant result. For example, we
will show that one of the most used models in tissue physics is not a good description
(the vertex model).
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